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This paper presents a cellular automaton model without step back to simulate the pedestrian counter flow in
a channel. The consideration of the surrounding environment when people make judgments on moving direc-
tions is added to a random walker model also without step back. Two types of walkers: the right walkers going
to the right and the left walkers going to the left are taken into account. The characteristics of counterflow are
clarified. Influences of the different interaction radius values and system sizes on movement are studied. Phase
transition from free moving to jamming is observed with the increase of entrance density. It is found that the
critical entrance density pc at the transition point does not depend on the system size when the interaction
radius value is large. Simulation results are represented as a comparison with the random walker model.

DOI: 10.1103/PhysRevE.75.046112 PACS number�s�: 89.40.�a, 05.50.�q, 05.70.Fh, 05.90.�m

I. INTRODUCTION

Recently, the cellular automaton �CA� model has been
frequently and extensively used in pedestrian evacuation
�1–6,8–13�. Instead of making detailed assumptions about
pedestrians’ behavior, static floor field �SFF� and dynamic
floor field �DFF� are used to reproduce many collective ef-
fects �1–5�. SFF does not change in time. It is related with
the surrounding geometry, i.e., the walking ground where the
evacuation takes place. The distance from a cell on the lattice
in the CA model to an exit door is usually stored in its
relative SFF value, and that information tells the pedestrian
on the cell where the exit door is and how to reach it from
his current position and then to escape successfully. While
DFF, on the other side, changes almost every simulation up-
date step during the whole evacuation, including diffusion
and decay. Inspired from the idea of chemotaxis, the concept
DFF represents a virtual trace left by moving pedestrians.
Subsequent pedestrians follow the preceding pedestrians’
footprints by inspecting the information �i.e., DFF� left �1,2�.
It reflects in a respect how the human trail evolves in the real
world �6�.

Kirchner et al. �3� investigated the role of conflicts in
pedestrian traffic, extended CA model, and introduced a fric-
tion parameter �. It is found that conflict effects are not an
unexpected artifact of the parallel update procedure, but are
important for an exact description of real evacuation dynam-
ics. Henein and White added another important element: lo-
cal pushing, by introducing a force floor field �4�. Then three
kinds of forces between one pedestrian and another, and
those between pedestrians and walls, are taken into account
by Song et al. �5�. All these forces, i.e., repulsion, friction,
and attraction, are basic reasons for complex behaviors to
emerge from evacuation. Helbing et al. �7� proposed a many-
particle-inspired theory to study in a different way the coor-
dination problems resulting from the competition of too
many entities for little space.

On the other hand, the CA model is extended by using the
transition �hopping� probability scheme �8–13�. Each pedes-
trian on a cell moves into adjacent cells with probabilities.
Phase transition from free moving to perfect stop of counter-
flow in a channel is simulated �8�. The dependence of the
jamming transition on system size �8,10�, drift strength �8�,
partition line �9�, back stepping �10�, and traffic rules �8,13�
have been studied. For evacuations in such places as smoky
rooms and corridors with low ceilings, pedestrians involved
move out on all fours. Experiments are carried out and mod-
els are developed to simulate slender particles on a square
lattice �11,12� for these situations. Weng et al. �13� simulated
counterflow of pedestrians with different velocities. Phase
transition among freely moving phase, lane formation phase,
and perfectly stopped phase are also observed.

However, the transition probability schemes in these re-
search works are almost of the same pattern: the pedestrian
can move forward, backward, right, left or stay. If it is a
model without back step, the movement in the backward
direction is restricted. All these hopping probabilities result
from the adjacent cells’ status in the corresponding direction.
Usually, only four or three �in the case of no back steps�
adjacent cells’ status are taken into account for a pedestrian
to decide which way to go. That is a little different from the
way we make judgements during real pedestrian traffic, in
which case not only the nearest neighbor cells’ status men-
tioned above are considered, but all around cells �e.g., cells
in corner directions like left-forward and right-forward, or
cells that are three cells away from the current cell� are taken
into consideration. Kirchner et al. �14� have also investigated
the influence beyond nearest neighbor interactions by in-
creasing the maximal walking speed vmax from the original 1
cell per update step. Basically speaking, the widening of the
visible area of pedestrians should not be due to or at least not
only due to a faster movement. It is an inherent ability of
pedestrians. With whatever speed they walk, even when
vmax=1 as in the random walker model, pedestrians should
still be aware of the influence of others beyond their neigh-
borhood.

In this paper, we introduce a parameter called interaction
radius to represent the considering of the surrounding envi-*Electronic address: wgsong@ustc.edu.cn
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ronment of pedestrians during movement. To clarify how it
improves the movement process, we compare it with a ran-
dom walker model without step back which has a very
simple transition probability scheme.

II. MODEL

The random walker model without step back can be seen
as a simple special case of the model used in Ref. �8� with
heading drift D=0. The excluded-volume effect is taken into
account, which means one cell can only hold one particle.
The transition probability matrix of the random walker
model without step back can be described as follows:

pm =
1

n
, �1�

where m means possible moving directions: up, down, left or
right, pm is the transition probability of the corresponding
direction, and n is the number of moving directions avail-
able.

So without any particles on his adjacent cells in Fig. 1, the
right walker �going to the right, indicated by the full circle�
has three moving directions available: up, down, right. Each
direction is equal to be chosen with a probability of 1 /3.

But what if there is a walker on his up-right-hand side as
shown in Fig. 1�b�? It should have some impact on his tran-
sition probability matrix, and eventually influence the move-
ment behavior of pedestrians. Or maybe, it is not a right
walker as himself he encounters but a left walker �going to
the left, indicated by the empty circle� as shown in Fig. 1�c�?
All these configurations make no difference to the transition
probability matrix in recent use of CA models, which have
been improperly ignored and have not been well studied.

We introduce the interaction radius �Ri� parameter to con-
sider situations like Fig. 1�b� and Fig. 1�c�. Particles make
judgements after collecting information on an area within Ri
cells around his current position. Take Ri=1 as an example,

particles will look at 8�=�Ri�2+1�2−1� cells, i.e., all the
cells around, except for the central one in Fig. 1�a�, before he
decides which way to move.

In the case of Ri=2, 24 cells are taken into account �Fig.
2�a��. As for the pedestrian in the center �we call him the
central pedestrian or the pedestrian under consideration� of
Fig. 2�a�, he collects the information sij of all the gray cells,
which reflects the impact of the cell at position �i , j� �denoted
as cij in the following context� on his current position �i0 , j0�,

sij = LijOij . �2�

Lij represents the dependence of sij on the distance l between
cij and the central cell. And Oij represents the relation be-
tween sij and the occupancy information of cij: whether it is
occupied and occupied by which kind of particle.

The interaction between two pedestrians over a distance
decreases with the increase of their distance. When the dis-
tance between them is small, changes of the distance do not
result in much difference on the interaction, while if the dis-
tance gets bigger and exceeds some critical value, the inter-
action decreases sharply with the increase of the distance.
Based on this and Refs. �15,16�, we calculate Lij as follows
to make simulation rules simple, and lc is the critical value of
distance, which is valued as four cells in our simulation,

Lij = �1, l � lc,

1/l , l � lc,
� where l = �i − i0� + �j − j0� . �3�

Oij is obtained as shown in formula �4�. This means we do
not distinguish whether the cell is occupied by a left walker
or a right walker,

Oij = �0, cij is empty,

1, cij is occupied.
� �4�

A new Oij function �formula �5�� that distinguishes occu-
pancy information is also used in our study and results are
shown as a comparison. This represents that the interaction
among pedestrians with different speeds is larger than that
among pedestrians with the same speed,
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FIG. 1. Transition probability configurations of the right walker
going to the right, indicated by the full circle, while the open circle
indicates the left walker going to the left.
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FIG. 2. �Color online� Illustration of interaction radius and cal-
culation of various S values.
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Oij = �0, cij is empty,

1, cij is occupied by a pedestrian in the same group as the central pedestrian,

2, cij is occupied by a pedestrian in the other group.
	 �5�

Every walker calculates the sij information of cells within
the interaction radius. Sul indicates the sum of sij of cells on
the up-left-hand side of the pedestrian under consideration
�the full circle in the center of Fig. 2�b��. And
Sur ,Sdl ,Sdr ,Su ,Sd ,Sl ,Sr correspond to the up-right-hand,
down-left-hand, down-right-hand, directly up, directly down,
directly left, directly right-hand side cells, respectively. Since
particles are only able to move left, right, up, and down on
the lattice, Sul ,Sur ,Sdl ,Sdr are projected and added their in-
fluence on these directions. Because pedestrians prefer to
move forward, the probabilities of moving sideways are
much more impressionable than the probability of moving
directly forward under the influence from corner directions.
Thus to make rules simple, we just consider the influence of
corner directions on the probabilities of moving sideways. Su
and Sd are revised as follows to reflect that influence:

Su = Su
0 + 0.5�Sul + Sur� ,

Sd = Sd
0 + 0.5�Sdl + Sdr� . �6�

After all these are done, Su ,Sd ,Sl ,Sr are used to revise the
transition probabilities in formula �1� as follows:

Pm = NpmT�Sm� = N
1

n

1

1 + Sm
,

with normalization, N = 
�
m

Pm�−1
. �7�

Here, the T function is used to reflect the influence of S
values on moving probabilities, which is usually a monotone
decreasing function. In our simulation we choose T�Sm�
=1/ �1+Sm� which informs: if Sm=0, there is no influence
from the surrounding environment and no need to revise pm,
while in other cases where Sm�0, it always decreases the
transition probability in the corresponding direction and in-
creases the transition probabilities of other directions after
the normalization of the transition probability matrix.

III. SIMULATION AND RESULTS

Figure 3 shows the schematic illustration of the pedestrian
counterflow in a channel in our model. Initially, there are no
walkers in the channel. The right �left� walkers are randomly
distributed on the left �right� boundary with an entrance den-
sity pl �pr�. All walkers are numbered randomly from 1 to N
�total number of walkers within the channel, including
boundaries�, which guarantees the upcoming sequential up-
date to work like a parallel �synchronous� update. Following
the rules mentioned in the preceding section, the numbered
walkers are updated in order. If the right �left� walkers reach

the right �left� boundary, they are removed from the channel.
After all these points are done, one update step is completed.
In the next time step, a number of new walkers are generated
on random positions on boundaries, which ensures that the
entrance density on the left-hand �right-hand� boundary re-
mains pl �pr�. The above procedure is repeated.

We carry out simulations on the counterflow in a W�L
channel without back steps. For different total entrance den-
sity p�pl+ pr�, the mean velocity �v� and the occupancy �
are checked. The mean velocity �v� at one update step is
defined as the number of walkers who choose to move for-
ward divided by the total number of walkers in the channel.
The occupancy � is self-explainable, which is defined as the
total number of walkers in the channel divided by the chan-
nel area �W�L�.

For each simulation, 10 000 time steps are carried out,
and the value of �v� and � are computed according to the last
4000 time steps averaged over 10 runs. Oij in formula �4� is
used, and results of simulation using the new Oij in formula
�5� are shown as a comparison at the end of this section.

First we give the simulation results derived from the ran-
dom walker model without step back, with which results of
our model are compared. Figure 4�a� shows the plot of the
mean velocity �v� against the total entrance density p for
W=10, 20, 50, 80, and 100 in the case of L=100. As we can
see, the mean velocity decreases with increasing p when p is
small. And when p gets larger than the critical entrance den-
sity �indicated as pc�, �v� goes down sharply to zero. This
indicates the phase transition from free moving to jamming
and perfect stop. Figure 4�b� shows the plot of the occupancy
� against the total entrance density p for the same simulation
results as those in Fig. 4�a�. The occupancy increases gradu-

FIG. 3. Schematic illustration of the pedestrian counter flow in a
channel in our model. The top and bottom sides of the channel are
walls. The left-hand and right-hand sides are open boundaries. The
right �left� walker going to the right �left� is indicated by the full
�open� circle, and comes into the channel from the left �right�
boundary with a constant entrance density pl �pr�. Arrows indicate
possible moving directions of the two groups. Gray field around the
circle indicates the interaction radius.
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ally as increasing p when p is small. And it goes up sharply
to one when p gets larger than pc. Notice that the �0, pc� part
of the curve �-p is below the dashed-dotted line �= p. This
means that even at the free moving state, the interaction
among pedestrians in movement still plays a role to make the
pedestrian density in the channel smaller than the total en-
trance density from a long time view.

Figure 5 shows the plots of the mean velocity �v� and the
occupancy � against the total entrance density p for W=10,
20, 50, 80, and 100 in our CA model considering the sur-
rounding environment where L=100 and Ri=2. Roughly the
same trends are derived, except for some interesting differ-
ences. If p are very small, there is not many particles in the
system. Considering the surrounding environment almost
makes no difference with simulation than without this con-
sideration. But when p gets a little larger, the number of
particles in the system increases. The difference of consider-
ing the environment comes out. Unlike Fig. 4�a�, with the
increase of entrance density p, the mean velocity goes up a
while and then slows down and finally drops sharply to zero
after p exceeds pc �Fig. 5�a��. And the mean velocity of
pedestrians in free moving is larger than that in Fig. 4�a�. It is

because after considering the surrounding environment, a pe-
destrian adjusts his transition probabilities into a pattern that
is more valuable and helpful to an efficient movement. It
makes him encounter less obstacles and lowers the probabil-
ity of getting stuck.

Figure 6 shows the plots of the mean velocity �v� and the
occupancy � against the total entrance density p when Ri
=5. Two things should be noticed. One is the deviation of
curve �-p at the free moving state from the dashed-dotted
line �= p becomes larger from Fig. 4 to Fig. 6. Take W
=100 as an example, when p=0.42, the occupancy � is
0.3625 in the random walker model, 0.3205 in the case of
Ri=2, and 0.3135 when Ri=5. When Ri becomes larger, pe-
destrians get more information about the surrounding envi-
ronment, and they do not waste their time on idle work of
wandering. Therefore the mean velocity �v� at the free mov-
ing state in Fig. 6 is larger than that in Figs. 5 and 4. The
other thing is from Fig. 4 to Fig. 5 and then to Fig. 6, the
curves with different W values are getting closer. Especially
for the p� �0.2,0.4� part of the free moving state, curves
almost overlap with each other when Ri=5. That means if

FIG. 4. Plots of the mean velocity �v� and the occupancy �
against the total entrance density p for W=10, 20, 50, 80, and 100
in the random walker model where L=100.

FIG. 5. Plots of the mean velocity �v� and the occupancy �
against the total entrance density p for W=10, 20, 50, 80, and 100
in our CA model where L=100 and Ri=2.
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pedestrians in movement collect enough information about
the outer environment, the width of the channel becomes less
important to the movement process.

Figure 7 shows the plots of the critical total entrance den-
sity pc against the inverse 1/W of W. In all three cases, when
the width W is larger than 80, the critical density p reaches to
a constant. It is found that the jamming transition does not
depend on the system size, especially when the interaction
radius value is large. As shown in Fig. 7�c�, when the width
W is larger than 20, the critical density p becomes constant.
In our simulation, considering the surrounding environment
does not effect much on pc, although due to the reason be-
fore, the average pc increases from 0.43 to 0.45 from Fig.
7�a� to Fig. 7�c�.

The entrance density on the left-hand boundary pl in all
simulations above are equal to the entrance density on the
right-hand boundary pr. What if the entrance densities on
both boundaries are nonsymmetrical? We study the depen-
dence of �v� and � on the fraction c. c is defined as the ratio
of pl to the total entrance density p. We run simulations on
the case W=50, L=100, pl=cp, pr= �1−c�p for different c
values: 1 /2, 1 /3, 1 /4, 1 /5, 1 /8, and 1/10, using the random

walker model, and our model with Ri=2 and Ri=5. Results
are shown in Figs. 8 and 9. It is found that at the free moving
state, changes of the fraction c influence little on the mean
velocity �v� and the occupancy �. While at the early jamming
state �p� �0.4,0.6��, the more asymmetrical the entrance
densities on both boundaries are, the more beneficial it is to
the movement process. To the extreme, when c=0 �well, c
=1 is the same�, there is only one group of pedestrians in the
channel. And it is more difficult to get into the perfect stop
phase.

FIG. 6. Plots of the mean velocity �v� and the occupancy �
against the total entrance density p for W=10, 20, 50, 80, and 100
in our CA model where L=100 and Ri=5.

FIG. 7. Plots of the critical total entrance density pc against the
inverse 1/W of W for L=100 in the random walker model and in
our CA model with Ri=2 and Ri=5.
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The tendency of how the results change against the frac-
tion c is more clear in Fig. 10. We run simulations on the
case L=100, W=50, P=0.5 with different c values using the
random walker model and our model with Ri=2 and 5. It is
also shown that c affects the movement process at the early
jamming state more than at the free moving state or at the
perfect stop state. This tendency and the slopes of these three
curves are similar. Therefore, how the asymmetry of the en-
trance densities on both boundaries influences the movement
process depends little on the interaction radius.

Figure 11 shows plots of the mean velocity �v� and the
occupancy � against the total entrance density p for L=100,
W=20 and 50, Ri=2 and 5 using different Oij functions. As
mentioned at the beginning of this section, here we use a
new Oij function in formula �5� for our model to distinguish
the occupancy information of cij. It is found that with the
same simulation conditions, pedestrians using the new move-
ment strategy move faster than before, while the occupancy
� does not change much.

FIG. 8. Plots of the mean velocity �v� against the total entrance
density p for different fractions c=1/2, 1 /3, 1 /4, 1 /5, 1 /8, and
1/10, where W=50, L=100, pl=cp, and pr= �1−c�p in the random
walker model and in our CA model with Ri=2 and Ri=5.

FIG. 9. Plots of the occupancy � against the total entrance den-
sity p for different fractions c=1/2, 1 /3, 1 /4, 1 /5, 1 /8, and 1/10,
where W=50, L=100, pl=cp, and pr= �1−c�p in the random
walker model and in our CA model with Ri=2 and Ri=5.
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IV. CONCLUSIONS

In this paper, a cellular automaton model without step
back for pedestrian movement in a channel considering the
surrounding environment is presented. In this model, a pe-
destrian collects information about around cells before he
makes his route choice. A parameter called interaction radius
�Ri� is added to represent the range of around cells taken into
account. Two groups of pedestrians are involved in the sys-
tem: right walkers going from the left-hand boundary to the
right-hand boundary, and left walkers going from the right-
hand boundary to the left-hand boundary. It is found that the
consideration of the surrounding environment is helpful and
valuable to an efficient movement. It helps pedestrians to
lower the probability of getting stuck. Movements with dif-
ferent system sizes have also been studied. The jamming

transition does not depend on the system size, especially
when the interaction radius value is large. Nonsymmetrical
entrance densities on both boundaries are checked. The de-
viation of pl and pr plays a more important role at the early
jamming state of pedestrian flow than at the free moving
state. A new strategy is used to distinguish the influence of
different pedestrian groups and results are compared with
those derived before. It is shown that the new strategy im-
proves the mean velocity but not the occupancy. Our model
is represented as a basic frame model considering the sur-
rounding environment. It can be extended by modifying
simulation rules such as L and O functions to consider more
complex situations in pedestrian flow in detail.
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